Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions

نویسندگان

  • G. D. Liu
  • A. K. Alva
چکیده

Ammonia (NH3) emission from nitrogen (N) fertilizers used in agriculture decreases N uptake by the crop and negatively impacts air quality. In order to better understand the factors influencing NH3 emission from agriculture, this research was conducted with four major soils used for potato production: Biscayne Marl Soil (BMS, pH 7.27), and Krome Gravelly Loam (KGL, pH 7.69) from Florida; and Quincy Fine Sand (QFS, pH 6.65), and Warden Silt Loam (WSL, pH 6.46) from Washington. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) or urea ((NH)2CO) sources were evaluated for ammonia volatilization at 75 kg N ha rate. The soil water regime was maintained at either 20 or 80% of field capacity (FC), and incubated at 11, 20 or 29°C. Results indicated that NH3 volatilization rate at 20% FC was 2 to 3-fold greater than that at 80% FC. The cumulative volatilization loss over 28 days ranged from 0.21% of N applied as NH4NO3 to 25.7% as (NH4)2SO4. Results of this study demonstrate that NH3 volatilization was accelerated at the low soil water regime. Moisture quotient (Q) is defined as a ratio of NH3 emission rate at 20% FC to that at 80% FC both at the same temperature. The peak Q values of NH3 volatilization were up to 20.8 for the BMS soil at 20°C, 112.9 for the KGL soil at 29°C, 19.0 for the QFS soil at 20°C, and 74.1 for the WSL soil at 29°C, respectively. Thus, maintaining a suitable soil water regime is important to minimize N-loss via NH3 volatilization and to improve N uptake efficiency and air quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Gibbs Energy Relationships for Ammonia Volatilizations from Agricultural Soils for Potato Production

Soil drought, that can be enhanced by global warming increases ammonia (NH3) volatilization. This laboratory study was conducted with two soils: Krome Gravelly Loam (KGL) from Florida and Warden Silt Loam (WSL) from Washington State and two fertilizers: Ammonium sulfate [(NH4)2SO4] or ammonium nitrate (NH4NO3). Two water regimes including 20 and 80% Field Capacity (FC) were used at 20°C which i...

متن کامل

High Water Regime Can Reduce Ammonia Volatilization from Soils under Potato Production

This research was conducted with Biscayne marl soil and Krome gravelly loam from Florida and Quincy fine sand and Warden silt loam from Washington to determine ammonia (NH3) volatilization at various temperature and soil water regimes. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate [(NH4)2SO4], or urea were applied to the soil at a rate of 75 kg N ha . Soil water regime w...

متن کامل

High litter moisture content suppresses litter ammonia volatilization.

With global food demand expected to increase by 100% in the next 50 yr, urgency to combine comprehensive strategies for sustainable, efficacious, and environmentally sensible agronomic practices has never been greater. One effort for US meat bird management is to reduce NH(3) volatilization from litter to create a better growing environment for the birds, improve production efficiency, retain N...

متن کامل

Identification of Factors Most Important for Ammonia Emis- sion from Fertilized Soils for Potato Production Using Principal Component Analysis

Ammonia (NH3) emissions from fertilized soils are a costly problem that is undermining agricultural and ecological sustainability worldwide. Ammonia emissions from crop production have been reliably documented in recent years. However, insufficient efforts have been made to determine the factors most influential in facilitating NH3 emissions. The goal of this study was to identify the principal...

متن کامل

Effects of soil moisture on the diurnal pattern of pesticide emission: Comparison of simulations with field measurements

Pesticide volatilization from agricultural soils is one of the main pathways in which pesticides are dispersed in the environment and affects ecosystems including human welfare. Thus, it is necessary to have accurate knowledge of the various physical and chemical mechanisms that affect volatilization rates from field soils. A verification of the influence of soil moisture modeling on the simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007